
SWEN 262
Engineering of Software Subsystems

Strategy Pattern

Sorting People
1. A person includes a name, an address, and

an ID number. For example:
a. Name: Rutherford B. Hayes
b. Address: 17 E William St, Delaware, OH 43015
c. ID Number: 001-00-019

2. People displayed by the application should
be sortable based on:
a. Name
b. ZIP code and Street Name
c. ID Number

Q: How might you go about
implementing this requirement?

Conditionals
public void sort(int sortType) {

 switch(sortType) {

 case LAST_NAME:

 // sort people by last name

 break;

 case ZIP_CODE:

 // sort people by ZIP code and then street name

 break;

 case ID_NUMBER:

 // sort people by ID number

}

A: Use a conditional, such as a switch
statement, to choose between different
algorithms.

Q: We already know that conditionals like
this can be a code smell.What are the
drawbacks of this solution?

A: The class is not very cohesive: it is
trying to do too many things. The sorting
algorithms are likely to be complex,
resulting in a lot of code.

In addition, it would be difficult to add
new algorithms without modifying the
code (violates OCP).

Subclassing

SortByName

sortPeople()

SortByAddress

sortPeople()

SortByID

sortPeople()

A: Create an abstract sort method in the
sorting class, and implement the different
sorting algorithms in subclasses.

Q: What are the drawbacks of this
solution?

A: The algorithms are hard wired to the
subclasses. This requires several
different versions of the sorting class that
differ only by the sorting algorithm used.

This makes switching between
algorithms difficult; a new instance needs
to be create and the data copied
between them.

PeopleList

+ sortPeople()
people: List

Defining a Sorting Strategy
Begin by defining an interface to represent a
sorting strategy. This interface will be
implemented by any class that can sort a list of
people.

public interface PeopleSorter {

 public void doSort(List<Person> people);

}

Next, create a concrete strategy for one of the
required sorting strategies, e.g. sorting people by last
name and then, if the last names match, by first
name.

public class SortByName implements PeopleSorter {

 public void doSort(List<Person> people) {

 people.sort(

 Comparator.comparing(Person::getLastName)

 .thenComparing(Person::getFirstName));

 }

}

Continue creating concrete strategies for each of the
required sorting strategies.

Interchangeable Strategies
public class PeopleList {

 private PeopleSorter sorter;

 private List<Person> people;

 public PeopleList() {

 people = new ArrayList<>();

 sorter = new SortByName();

 }

 public void setSorter(PeopleSorter sorter) {

 this.sorter = sorter;

 }

 public void sort() {

 sorter.doSort(people);

 }

}

Modify the sorting class, i.e. PeopleList, so
that it is a context on which the sorting strategy
can be changed.

The context will need to aggregate an instance
of the strategy interface...

...and provide a method that allows external
clients to change the strategy at any time.

When a client calls the method to sort the list of
people, the context will delegate the
responsibility for handling the sort to the current
strategy.

Context

+ setStrategy(strategy: Strategy)
+ execute()

- strategy: Strategy

GoF Strategy Structure Diagram

ConcreteStrategyA

algorithm()

Strategy
<<interface>>

algorithm()

ConcreteStrategyB

algorithm()

ConcreteStrategyC

algorithm()

Client Intent: Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the algorithm
vary independently from the clients that use it.

(Behavioral)

strategy.algorithm()

PeopleList
<<Context>>

+ setSorter(sorter: PeopleSorter)
+ sort()

- sorter: PeopleSorter
- people: List

People Sorter Strategy Design

SortByName
<<ConcreteStrategy>>

doSort(people: List)

PeopleSorter
<<Strategy>>

doSort(people: List)

Application
<<Client>>

sorter.doSort(people)

SortByAddress
<<ConcreteStrategy>>

doSort(people: List)

SortByID
<<ConcreteStrategy>>

doSort(people: List)

Once again, note that the classes have
appropriate names that are in context for
this application...

But that each participant
also includes its role in
<<guillemets>> below the
class name...

GoF Pattern Card Name: People Subsystem GoF Pattern: Strategy

Participants

Class Role in Pattern Participant’s Contribution in the context of the application

Application Client The main user interface to the application. When the user clicks on of
the table columns, the application will change the current sorting
strategy used to sort people in the UI.

PeopleList Context Maintains a list of people and exposes a method to allow clients to sort
the list. Exposes a method that allows clients to change the order in
which people are sorted by setting a concrete PeopleSorter.

PeopleSorter Strategy The interface for an algorithm that is capable of sorting people. Concrete
implementations of this interface should compare two people to
determine the desired natural ordering (e.g. which comes first).

SortByName ConcreteStrategy A PeopleSorter that sorts two people by first comparing the last names.
If the last name is the same, the first names of the two people are
compared.

SortByAddress ConcreteStrategy A PeopleSorter that sorts two people by first comparing the ZIP code of
their addresses. If the ZIP code is the same, the street name is used. If
the street name is the same, the house number is used.

SortByID ConcreteStrategy A PeopleSorter that sorts two people by comparing their ID numbers. ID
numbers are unique, and so there does not need to be a fallback
strategy to handle two people with the same ID.

Deviations from the standard pattern: None

Requirements being covered: 2. People are sortable by 2a. name, 2b. ZIP code and street, 2c. ID number.

Sorry about the eye chart, but
this is a lot of information to
pack into one slide!

Note that each participant has at
least 2-3 sentences of
description.

Also note that each concrete
strategy is documented
separately - they are not
combined into a single row.

In your documentation it is OK
for a card to span multiple
pages for readability.

Sequence Diagram

This sequence diagram
shows a user starting the
application, and then
changing the sort order.

Strategy
The intent of the Strategy pattern gives it
distinguishing characteristics from other
patterns.
● “Family” refers to a set of algorithms that

perform the same type of operation but
use different techniques, for example:

○ Sorting
○ Searching
○ Layout Managers (Swing, JavaFX, Android)

● An external client (a separate class)
usually specifies the strategy to use.

● Usually the strategy is relevant to only
one aspect of the context’s operation.

In the near future you will notice that some
patterns have similar (or even identical)
structures, but differ in their intent.

These differences are crucial when choosing
the appropriate pattern.

Strategy
There are several consequences to implementing the
strategy pattern:
● Families of related algorithms.
● An alternative to subclassing.
● Elimination of conditional statements.
● A choice of different implementations of the same

behavior (e.g. quicksort vs. merge sort).
● Clients must be aware of the alternatives to switch

between them.
● Communication overhead between Context and

Strategy.
● Increased number of objects in the system.

Things to Consider

1. How does Strategy affect the

overall cohesion in the system?

2. The coupling?

3. How does it support the

Open/Closed Principle?

4. What other design principles

might strategy make better or

worse?

5. When might it not be

appropriate to use Strategy?

